
InstruGuard: Find and Fix Instrumentation Errors
for Coverage-based Greybox Fuzzing
Yuwei Liu1,2†, Yanhao Wang3†, Purui Su1,2, Yuanping Yu1,2 and Xiangkun Jia1,2∗

1TCA/SKLCS, Institute of Software, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

3QiAnXin Technology Research Institute
{yuwei2018, purui, yuanping2017, xiangkun}@iscas.ac.cn wangyanhao@qianxin.com

Abstract—As one of the most successful methods at vulner-
ability discovery, coverage-based greybox fuzzing relies on the
lightweight compiler-level instrumentation to achieve the fine-
grained coverage feedback of the target program. Researchers
improve it by optimizing the coverage metrics without ques-
tioning the correctness of the instrumentation. However, instru-
mentation errors, including missed instrumentation locations
and redundant instrumentation locations, harm the ability of
fuzzers. According to our experiments, it is a common and
severe problem in various coverage-based greybox fuzzers and
at different compiler optimization levels.

In this paper, we design and implement InstruGuard, an
open-source and pragmatic platform to find and fix instrumen-
tation errors. It detects instrumentation errors by static analysis
on target binaries, and fixes them with a general solution based
on binary rewriting. To study the impact of instrumentation
errors and test our solutions, we built a dataset of 15 real-world
programs and selected 6 representative fuzzers as targets. We
used InstruGuard to check and repair the instrumented bina-
ries with different fuzzers and different compiler optimization
options. To evaluate the effectiveness of the repair, we ran the
fuzzers with original instrumented programs and the repaired
ones, and compared the fuzzing results from aspects of execution
paths, line coverage, and real bug findings. The results showed
that InstruGuard had corrected the instrumentation errors of
different fuzzers and helped to find more bugs in the dataset.
Moreover, we discovered one new zero-day vulnerability missed
by other fuzzers with fixed instrumentation but without any
changes to the fuzzers.

Index Terms—Software Security, Fuzzing, Instrumentation

I. INTRODUCTION

Coverage-based greybox fuzzing has become one of the
most popular techniques for software vulnerability discovery
due to its ease of use and efficiency [35]. Taking the state-
of-the-art fuzzer AFL (American Fuzzy Lop) [52] and its
popular family tools [9–11, 13, 14, 17, 18, 23, 24, 27, 36,
44, 47, 50, 53, 54] as examples, the workflow of these
greybox fuzzers can roughly be divided into two main stages:
instrumentation and fuzzing loop, as shown in Figure 1. The
instrumentation codes injected into compiled programs are
used to capture branch (edge) coverage or other features
while fuzzing. It provides a simple way for fuzzer to auto-
matically mutate input files towards more coverage based on
the captured feedback. In this way, coverage-based greybox

† co-leading authors. ∗ corresponding author.

Initial Seed

①

Trim Case

②

Mutate Case

Execute and

Monitor

④

Next Case

③

⑤

Crash Report

Feedback

QueueQueue

F
u

z
z
in

g
 L

o
o

p

Instrumentation

Instrumented

Program

Program

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

basic

block

basic

block

basic

block

cur_location = <COMPILE_TIME_RANDOM>;
shared_mem[cur_location ^ prev_location]++;
prev_location = cur_location >> 1;

basic

block

basic

block

basic

block

Figure 1: The Workflow of Coverage-based Greybox Fuzzing.

fuzzing could learn the input format and test the deeper
program logic without prior knowledge.

As instrumentation feedback is crucial to greybox fuzzer,
researchers propose lots of approaches to improve it. Parts
of them enhance the function of the injected code to record
more behavior information of the program for detecting
specific vulnerabilities, such as concurrency [48] and memory
corruption bugs [10, 46, 47]. The other of them [10, 18, 49]
improve the sensitivity of the instrumentation feedback for
all branches to perceive subtle changes of different program
states. All of the current work strongly relies on an assump-
tion that the instrumentation for getting coverage feedback is
complete and accurate. However, according to our analysis,
the assumption is not always correct.

The current greybox fuzzers provide two methods to
inserts instrumentation into each basic block to get accurate
edge coverage feedback. One is the assembly-level rewriting
approach. The other is compiler-level instrumentation, which
leverages the plugin of compilers such as LLVM [22].
However, some factors, such as compiler optimizations, result
in basic block merging and other impacts that bring a side
effect of missing instrumentation locations and redundant
instrumentation locations, and affect the completeness and

accuracy of the instrumentation feedback for both methods.
In the worst-case scenario of missing instrumentation lo-
cations of some basic blocks, the fuzzers cannot perceive
whether the missing parts are executed and lose the chance
to find the potential vulnerabilities in the lost code fragments.

In this work, we try to find and fix errors of instrumentation
and set a series of experiments to figure out the impacts on
fuzzing. For explicitness of our research, we name the incor-
rect instrumentation locations in the instrumented binaries as
“instrumentation errors”, and break the problem into three
research questions as follows:
• RQ1: How serious are instrumentation errors?
• RQ2: Can we fix instrumentation errors of fuzzers?
• RQ3: Does the fixed instrumentation benefit to fuzzing?
To answer the research questions, we built a dataset of 15

real-world programs collected from recent fuzzing papers as
our targets [10, 12, 13, 18, 27, 29, 36, 46, 50] and selected 6
representative greybox and whitebox fuzzers (i.e., AFL [52],
FairFuzz [24], MOPT [27], Memlock [47], AFL++ [16], and
Angora [10]) to study the impacts. We instrumented the target
programs following the fuzzers’ instructions with their instru-
mentation methods, including assembly-level instrumentation
and compiler-level instrumentation, then checked instrumen-
tation errors in the binaries. We also studied the impacts
of different compiler optimization options. Concretely, we
traversed each basic block in the program based on IDA
Pro [2] and compared it with the specific patterns to judge
whether it was instrumented or not heuristically. The results
showed that the problem is common in the real world as it
exists in both types of instrumentation methods of different
fuzzers and at all compiler optimization levels.

A straightforward solution to fix instrumentation errors is
controlling the compiler options. However, according to our
experiments, the compiler-level instrumentation errors could
not be eliminated effectively. This paper presents a general
method based on binary rewriting and we implement a pro-
totype tool called InstruGuard to find and fix instrumentation
errors of coverage-based greybox fuzzers.

For evaluating our solutions, we ran a series of fuzzing
experiments on the dataset we built. More specifically, we
used code coverage, path number, and real bugs1 as the met-
rics to compare the results of original instrumented programs
and the fixed ones with different fuzzers. The results of 72
hours × 5 times running showed that our fix could ensure the
correctness of the instrumentation implementation. Although
we are not improving coverage-feedback greybox fuzzing
directly, our solutions are beneficial for fuzzing. We found
one new vulnerability missed by other fuzzers just with the
fixed instrumentation but without any changes to the original
fuzzer. Overall the paper makes the following contributions:
• We point out that instrumentation errors, including

missed instrumentation locations and redundant instru-

1Real bugs represent the vulnerabilities found by fuzzers and are manually
verified. We associate each real bug with the corresponding CVE-ID or bug
issue number.

mentation locations, are common for different fuzzers
and different compiler optimization options, and impact
coverage-based greybox fuzzing seriously.

• We propose a general solution for instrumentation errors
based on binary rewriting. Based on the solution, we
design and implement an open-source and pragmatic
platform to find and fix instrumentation errors.

• We built a dataset of real-world programs and eval-
uated the effectiveness of InstruGuard by fuzzing the
fixed programs and the original instrumented programs
without any modification of the fuzzers. The results
showed that we had corrected the instrumentation of
coverage-based greybox fuzzing and helped to find more
vulnerabilities.

To foster future research, we will release the source code
of InstruGuard and the dataset at https://github.com/Marsm
an1996/instruguard.

II. BACKGROUND

A. Coverage-based greybox Fuzzing

Fuzzing was proposed in the 1990s [28] and developed for
decades. Among kinds of fuzzers, coverage-based greybox
fuzzing (e.g., AFL [52]) attracts more attention recently
because of its high efficiency and ease of use. Based on
a modified form of edge coverage to effortlessly pick up
subtle, local-scale changes to program control flow, the fuzzer
could mutate towards more program paths and find more
vulnerabilities.

To get the coverage feedback, coverage-based greybox
fuzzers implement instrumentation while compiling. The
code for collecting coverage information is inserted into the
target program by two methods when the source code is
available, i.e., assembly-level instrumentation and compiler-
level instrumentation. Next, we use AFL as the representation
of coverage-based greybox fuzzing to introduce the details of
instrumentation.

Assembly-level instrumentation. AFL uses wrappers
(i.e., afl-gcc and afl-clang) for two normal compilers (i.e.,
gcc and clang) to conduct assembly-level instrumentation
and produce binaries. They parse the assembly file line by
line and modify it during the compilation stage according
to the following rules. Rule1: If the line is a function label,
branch destination label, or conditional jump instruction, they
will add instrumentation. It is mainly because these labels and
instructions mark the boundaries of the basic blocks. Rule2: If
the line is in the section other than text2 or after .p2align3,
they will leave this basic block un-instrumented even though
the line satisfies the Rule1.

Compiler-level instrumentation. The LLVM mode of
AFL leverages afl-clang-fast to do compiler-level instru-
mentation via loading LLVM pass while compiling. It walks

2The text section is used for keeping the actual assembly code of a
program. Hence, AFL only inserts instrumentation into this section.

3AFL does not intend to instrument the basic blocks after .p2align
to reduce unnecessary instrumentation while compiling the program under
OpenBSD.

https://github.com/Marsman1996/instruguard
https://github.com/Marsman1996/instruguard

 1 fread(hdr, sizeof(file_header), 1, f);

 2 if (hdr->magic != MAGIC) exit(1);

 3 entry *ent = (entry *) malloc(sizeof(entry));

 4 fread(ent, sizeof(entry), 1, f);

 5 if (ent->type == TYPEA) {

 6 if (ent[0] == 0x6c) {

 7 if(ent[1] == 0x61)

 8 if(ent[2] == 0x75)

 9 if(ent[3] == 0xde)

10 printf("fdata = %f\n"+*(unsigned int *)ent,

ent->data.fdata); // crash

11 }

12 }

 6 if (ent[0] == 0x6c) {

 7 if(ent[1] == 0x61)

 8 if(ent[2] == 0x75)

 9 if(ent[3] == 0xde)

10 printf("fdata = %f\n" + *(unsigned int *)ent,

 ent->data.fdata); // crash

11 }

12 }

 7 if(ent[1] == 0x61)

 8 if(ent[2] == 0x75)

 9 if(ent[3] == 0xde)

(a) Source code of the simplified sample.

 1 %cmp31 = icmp eq i8 %9, 0x61

 2 %cmp35 = icmp eq i8 %11, 0x75

 3 %or.cond71 = and i1 %cmp31, %cmp35

 4 %cmp39 = icmp eq i8 %5, 0xDE

 5 %or.cond72 = and i1 %cmp39, %or.cond71

 6 br i1 %or.cond72, label %if.then41, label %if.end58

 1 %cmp31 = icmp eq i8 %9, 0x61

 2 %cmp35 = icmp eq i8 %11, 0x75

 3 %or.cond71 = and i1 %cmp31, %cmp35

 4 %cmp39 = icmp eq i8 %5, 0xDE

 5 %or.cond72 = and i1 %cmp39, %or.cond71

 6 br i1 %or.cond72, label %if.then41, label %if.end58

(b) LLVM IR code of the nested if statements.

False

loc_400BB9:

 Instrumentation

 cmp al, 6Ch

 jz loc_400CFA

True
loc_400BEC:

 Instrumentation

 cmp dl, 61h

 jz loc_400CFA

True

loc_400C13:

 cmp cl, 75h

 jz loc_400CFA

False

loc_400CFA:

 Instrumentation

 retn

True

loc_400C1C:

 cmp sil, 0DEh

 jz loc_400CFA

True

loc_400C26:

 Instrumentation

 lea rdi, fdata_addr

 call printf

False

False

(c) Control flow graph of the assembly code.

Figure 2: Motivation example. Including the source code, the control flow graph of lines 6∼12 of the source code compiled with -O3, and
the IR code of lines 7∼9 of the source code.

through all basic blocks at the LLVM IR (Intermediate
Representation) level and inserts instrumentation codes at the
beginning of each basic block.

B. Motivating Example

The coverage-feedback fuzzers assume that the compilers
or wrappers they use could carry out correct instrumentation
during compilation, helping them to obtain accurate feedback
from running states. However, it remains unexplored whether
the compiler could guarantee the accuracy of the instrumen-
tation. We will illustrate the problem through the simplified
code snippet in Figure 2a.

The sample program4 is simplified from a real-world code
snippet of the Libxml2 library [41], which is a software
library for parsing XML documents. It first parses the file
header and compares the checksum with the magic number.
After that, it copies the content of the file to ent. Then
the program verifies the first four bytes in ent by a nested
if structure one by one. Only if all the checks are passed
through, it will trigger the crash at line 10.

Based on the intuition of coverage-based greybox fuzzing,
every branch of the sample program should be instrumented
so that AFL could find the crash easily. But it was sur-
prising that for binary compiled with -O3 (i.e., the default
compiler optimization level that AFL uses), AFL could not
find any crashes after 24 hours, and failed to cover line
8∼10. According to our analysis, this is because of the
incomplete instrumentation. Figure 2c illustrates the control
flow graph of the sample binary. As the graph shows, the
nested if structure in Figure 2a (i.e., line 6∼9) contains four
basic blocks (i.e., loc 400BB9, loc 400BEC, loc 400C13,
and loc 400C1C). To achieve complete instrumentation and

4https://groups.google.com/g/afl-users/c/e89ruXs7oOc/m/JjU03GlEBQAJ

keep sensitive for all branches, the greybox fuzzer should
instrument all four assembly-level basic blocks. However, an
instrumentation error occurs while compiling the program
in the LLVM mode of AFL. As Figure 2b shows, three
compare statements (i.e., line 7∼9 in Figure 2a) are merged
into one LLVM IR-level basic block because of the opti-
mization that the compiler applies. Hence, afl-clang-fast
only inserts one instrumentation at the beginning of the
basic block. In the corresponding binary produced by the
compiler, two assembly-level basic blocks (i.e., loc 400C13
and loc 400C1C) miss instrumentation because of the error.
As a result, it loses the ability to perceive two missed
branches, and triggers the vulnerability after these basic
blocks with a low probability.

C. Instrumentation errors of Greybox Fuzzers

According to our observation, there are mainly two types
of errors in the instrumentation of coverage-based greybox
fuzzers (we named them as “instrumentation errors” in this
paper).

MIL (missed instrumented location) means one basic
block is missed by instrumentation. If the basic block is not
instrumented, it will not give back some key information
when it is executed, such as the coverage feedback [52],
memory usage behavior [47], and so on. So the fuzzer will
not get useful feedback to keep the paths, including the basic
block, lose the possibility to explore the following paths
further.

RIL (redundant instrumented location) means that there is
more than one instrumentation inserted in the same basic
block. RIL increases the path depth, which misleads the
fuzzers depend on the execution depth. In addition, because
greybox fuzzers use fixed-size (e.g., 64KB) hash tables (i.e.,
bitmap) to store feedback information, RIL, which expands

Algorithm 1 The Detection Workflow.
Input: Instrumented Program
Output: Data about instrumentation errors of Program

1: P ← DISASSEMBLE(Program)
2: for bb = P.StartBB → P.EndBB do . scan each basic block
3: InstruSet ← ∅ . used to record all instrumentation in a bb
4: offset ← 0 . used to record the offset of instruction in the pattern sequence
5: instSequence ← empty list . used to record successive instructions
6: for inst = bb.StartInst → bb.EndInst do . scan each instruction
7: if INSTRUPATTERNMATCH(inst, offset) then
8: instSequence.APPEND(inst)
9: if offset == SIZE(intruPattern) − 1 then

10: InstruSet ← InstruSet ∪ instSequence
11: offset ← 0
12: instSequence ← ∅
13: else
14: offset ← offset + 1
15: end if
16: end if
17: end for
18: if SIZE(InstruSet) == 0 then
19: MILNum ← 1
20: else if SIZE(InstruSet) > 1 then
21: RILNum ← SIZE(InstruSet) − 1
22: end if
23: SAVEINSTRUINFO(bb, InstruSet, MILNum, RILNum)
24: end for

the number of instrumentation locations, could exacerbate
bitmap collision.

Some researchers [21, 25, 26] notice that instrumentation
could affect fuzzing, but few of them analyze and evaluate
the impacts. As it is an underlying problem for almost all
coverage-feedback greybox fuzzers, it motivates us to design
an automatic tool to find and fix them to ensure fuzzing with
correct instrumentation.

D. Focus of this paper

In this paper, we focus on studying the instrumentation
errors of coverage-feedback greybox fuzzers with compiler-
level instrumentation. We try to develop a tool to find and fix
these errors in the instrumented target binaries. Although we
are not improving coverage-feedback greybox fuzzing from
the fuzzing framework or strategies, our findings and tool
can cooperate with existing fuzzers and benefit them as the
instrumentation is accurate and complete.

III. METHOD

According to our analysis, instrumentation errors could
cause incorrect coverage feedback and further harm fuzzing.
To find and fix these errors, we firstly design a method
to detect them in target binaries based on static analysis.
Then we design two methods to fix instrumentation errors:
firstly we try a straightforward method by changing compiler
options, then we propose a general approach based on binary
rewriting named InstruGuard. It should be noted that, in this
section, the basic block represents the assembly-level basic
block.

A. Detect Instrumentation Errors

To detect instrumentation errors, we disassemble the in-
strumented program and examine each basic block heuris-
tically. As shown in Algorithm 1, for a basic block bb of
the target program, we traverse all the instructions in it (line

Algorithm 2 The Repair Workflow.
Input: Instrumented Program
Output: Fixed Program

1: P ← DISASSEMBLE(Program)
2: for bb = P.StartBB → P.EndBB do
3: InstruSet, MILNum, RILNum ← LOADINSTRUINFO(bb)
4: if MILNum then
5: INSERTINSTRU(bb)
6: else if RILNum then
7: for i = 0 → RILNum do
8: DELETEINSTRU(bb, InstruSet[i])
9: end for

10: end if
11: end for
12: FixedProgram ← ASSEMBLE(P)

6), leverage function InstruPatternMatch to check each in-
struction with the specific pattern of the instrumentation and
judge whether it belongs to the instrumentation (line 7). If so,
we add the instruction inst to the sequence instSequence
(line 8). If the instrumentation pattern is matched exactly
(line 9), we add instSequence to InstruSet (line 10) and
reset the correlation variables (line 11∼12). When finishing
the traversal, we check the number of instruction sequences
in InstruSet. If there is no sequence in InstruSet, which
means that bb has a MIL error, we set the MILNum to 1 (line
18∼19). If there is more than one sequence, this bb has one
or more RIL errors, and we set the RILNum to the number of
RIL errors (line 20∼21). After that, we save the information
of the instrumentation set InstruSet, the number of MIL
error MILNum, and the number of RIL errors RILNum (line 23).

1 mov reg1, cs:__afl_area_ptr ;shared_mem
2 xor reg2, cur_loc ;edge_id
3 add byte ptr [reg1+reg2], 1 ;shared_mem[edge_id]++
4 mov reg2, cur_loc >> 1 ;reg2 stores the prev_loc

Listing 1: The template code of the instructions instrumented by
afl-clang-fast. cur loc is a constant and is generated during the
compilation.

The patterns we used for matching are extracted from the
instrumentation codes of fuzzers. Taking AFL as an example,
the patterns are as following: 1 for programs compiled with
afl-gcc, we mark the call instruction to the record function
afl maybe log5 as the feature of instrumentation; 2

for programs compiled with afl-clang-fast, we highlight
the instruction sequence of xor, add/inc, and mov, which
represents the logic of the inserted instructions of instru-
mentation as shown in Listing 1. Specifically, AFL obtains
the edge id by applying XOR operation to the cur loc and
prev loc, adds one to shared mem[edge id], and stores
the left shifted cur loc to prev loc. If InstruGuard finds
the sequence, and the second argument of instructions xor
(x2) and mov (m2) satisfy the equation: m2 = x2 >> 1, it
marks the instruction sequence as the instrumentation. For

5AFL inserts a function call to afl maybe log in each basic block, and
the parameter to that call is a different value in each basic block. Therefore,
when this instrumented code is executed, AFL can log which branch is
triggered.

29.6%
26.2%

13.2%
6.2%

11.5%

-simplifycfg
-jump-threading
-inline
-loop-rotate
-elim-avail-extern
-globalopt
-loop-unroll
-loop-simplify
-licm
-loop-unswitch
others

Figure 3: Distribution of the number of affected instrumented
location in different optimization flags of clang.

other fuzzers, we also manually analyze the features and use
them as the prior knowledge for detection.

B. Fix Instrumentation Errors

1) Straightforward solution based on compiler options:
As both of the instrumentation methods are implemented
while compiling and the process are affected by compiler
options, a straightforward solution is to control compiler
optimization options. Besides the performance differences of
various options, we analyzed the impacts of the options on
instrumentation locations by passing different optimization
flags to the compiler. There are 27 flags of clang and 66
flags of gcc, which could change the number of instrumented
locations when used alone, and Figure 3 displays the top
10 flags of clang. We disabled all the flags to fix the
instrumentation errors and checked the compiled binaries.

However, according to our experiments, it is not the
proper way to fix instrumentation errors. Besides losing the
performance advantage of compiler optimization, the instru-
mentation errors are not mitigated effectively by changing
compiler options. As shown in Table III, the repair rate is
only 49.86 % on average.

2) General solution based on Binary Rewriting: We pro-
pose an intuitive but more general repair method that directly
fixes the instrumentation errors on the instrumented binaries
based on binary rewriting. After identifying whether there
are instrumentation errors and locating the position of the
errors, we fix the MIL and RIL errors following the working
procedure shown in Algorithm 2.

Firstly we disassemble the given program to the assembly
code P (line 1). Then we traverse the basic blocks in P to fix
the instrumentation errors (line 2). For a specific basic block
bb, we load the result of Algorithm 1 to get instrumentation
set InstruSet, the number of MIL errors MILNum, and the
number of RIL errors RILNum (line 3). If this bb has a MIL
error, we insert an instruction sequence (i.e., instrumentation)
to the bb (line 4∼5). If this bb has one or more RIL errors,
we remove all instrumentations except the last one in this bb
(line 6∼9). Finally, we recompile the program P and get the
repaired program (line 12).

We rewrite the instrumented binary instead of the vanilla
binary because the compiler-level instrumentation is a higher-
performance instrumentation mode. By keeping these instru-

Pre-Processing

Basic Blocks
Control Flow

Graphs

 Instrumentation

Error Detection

Instrumentation

Error Correction

Compiler

Recompile
Error

Log
Assembly

Files

Instrumented

Executable Files

Greybox

Fuzzers

Instrumentation

Error Logs

Instrumented

Executable Files

Instrumentation

Pattern Analysis

Figure 4: Architecture of InstruGuard.

mented locations, we control the run-time overhead within a
reasonable range.

C. Implementation

We implement a framework named InstruGuard to find and
repair instrumentation errors based on the above design. The
architecture is shown in Figure 4. InstruGuard consists of
three major components: the instrumentation error detection
component, the error correction component and the compi-
lation component. Before being processed by InstruGuard,
the instrumented executable files are pre-processed to get
the information of basic blocks and control flow graphs.
The instrumentation patterns are also prepared as our prior
knowledge.

The detection component detects instrumentation errors,
which is developed based on IDApython [3]. It identifies
instrumentation by matching the instruction sequence with
particular patterns, and we adjust the matching patterns to
detect instrumentation for different fuzzers as described in
Section III-A. It is worth noting that IDA Pro sometimes
identifies a basic block incorrectly due to a false branch label
with no corresponding jump instruction. InstruGuard fixes it
by checking the reference of each label with IDApython API
CodeRefsTo().

The error correction component is implemented based on
RetroWrite [15], which is a precise and efficient binary-
rewriting instrumentation tool. Firstly, we use it to disas-
semble the input binary file to the assembly code. Then
InstruGuard modifies the assembly code to repair the instru-
mentation errors. For MIL errors, it inserts an instruction
sequence, such as a function call to the record function
(e.g., afl maybe log) or a pattern sequence (e.g., as
Listing 1 shows), to conduct instrumentation. For RIL errors,
it comments out the redundant instructions.

The compilation component produces binary executables
based on the modified assembly code. In detail, we write
a wrapper for the compiler (i.e., gcc) to recompile the
program. According to our analysis in Section IV-B, gcc
itself will not introduce new instrumentation errors except
for several side-effects in afl-gcc. For example, AFL may

miss the instrumentation after .p2align due to Rule2 if it uses
afl-gcc to compile programs under a UNIX-like operating
system except for OpenBSD.

IV. EVALUATION

In this section, we set experiments to answer the research
questions raised in Section I. To answer RQ1, we instru-
mented real-world programs with the specific implementa-
tion of different coverage-based greybox fuzzers and tried
different optimization levels of the compilers they use. Then
we checked the instrumented programs with InstruGuard and
analysed the root cause of the instrumentation errors. For
RQ2 and RQ3, we repaired the instrumented programs with
errors and calculated the fixed rate. Then we ran fuzzers with
the original programs and the fixed ones, and compared the
fuzzing results.

A. Setup Experiments

1) Program Dataset: We built a dataset of real-world
programs by gathering 15 open-source Linux applications
from recent papers published during the last two years with
the corresponding version. The 15 applications are shown
in Table I, including image parsing and processing libraries,
text parsing tools, multimedia file processing libraries, and
developing tools. In addition to version information, we
also represent the default optimization option set by their
developers and in which paper the application is selected as
the test bench.

2) Instrumentation Methods: The instrumentation is re-
lated to fuzzers’ implementation and compiler optimization.
In our experiments, we selected 6 state-of-the-art fuzzers
that get coverage feedback through instrumentation, i.e.,
AFL [52], FairFuzz [24], MOPT [27], MemLock [47],
Angora [10] and AFL++ [16]. As AFL is the most pop-
ular coverage-based greybox fuzzer, we chose both the
assembly-level mode (afl-gcc) and the compiler-level mode
(afl-clang-fast) of it. FairFuzz, MOPT, and MemLock
are three tools based on AFL, but towards different goals.
We chose them to study the AFL’s family. Chen et al.
rewrite the algorithms of AFL in Angora, so we chose it
as the comparison to avoid simple implementation bugs of
greybox fuzzers. AFL++ is a union of several improvements
of AFL and contains two different instrumentation methods,
i.e., pcguard mode and LTO mode. We wanted to see if
instrumentation errors were common for the above fuzzers
and their instrumentation implementation.

3) Fuzzing Setting: To study the impacts of instrumenta-
tion errors on fuzzing and test our solutions, we set fuzzing
experiments with the instrumented program and the corre-
sponding fuzzers. All the experiments were performed on
five servers running Ubuntu 16.04.2 LTS and equipping with
Intel(R) Xeon(R) CPU E5-2630 v3@2.40GHz (32 cores) and
32GB RAM. The compilers were gcc 5.4.0 and clang 6.0,
as gcc 5.4.0 was the default gcc version of Ubuntu 16.04,
and clang 6.0 was widely used by related works. For one
target program, we ran experiments on the same server and

TABLE I: Real-world applications used in the experiment. Paper
means where the application is selected as the test bench.

Package Program Version Default
Option Paper

libwav wav gain 5cc8746 -O2 EnFuzz [13]
mp3gain mp3gain 1.5.2 -O2 MOPT [27]
libjpeg cjpeg 9a -O2 EnFuzz
lupng lupng 877a76f -O0 EnFuzz

nm 2.29 -O2 CollAFL [18]
objdump 2.29 -O2 PTrix [12]
size 2.29 -O2 Angora [10]binutils

strip 2.29 -O2 Neuzz [36]
libming listswf 0.4.8 -O2 ProFuzzer
ngiflib gif2tga c8488d5 -O TortoiseFuzz
catdoc catdoc 0.95 -O2 CollAFL
libpng pngfix 1.6.34 -O2 Angora

tiff2pdf 4.0.9 -O2 TortoiseFuzzlibtiff tiff2ps 4.0.9 -O2 CollAFL
mpg321 mpg321 0.3.2 -O2 MOPT

configured it with the same seeds and command. We used the
test cases of AFL as seeds that could be processed by the
target application. Otherwise, we randomly selected files. The
program arguments used in the evaluation were the same as
the corresponding papers or issues. Each experiment timeout
was set to 72 hours. Furthermore, we repeated all experiments
5 times and took the average value. We collected paths,
coverage, and real bugs as the fuzzing results.

B. Detect Instrumentation Errors (RQ1)

We compiled the programs in our dataset following the
instructions of different fuzzers and with different compiler
optimization levels (i.e., O0 to O3, O3 is the default option of
AFL). Then we checked them with InstruGuard. The results
are shown in Table II. Since FairFuzz and MOPT change the
seed selection and mutation strategy without modifying the
instrumentation method of the vanilla AFL, we got the same
instrumentation results as AFL and did not put them in the
table. We also did not list the data of the programs compiled
by afl-gcc with O0 and O1 in the table since they almost had
no instrumentation errors.

As Table II shows, instrumentation errors are common for
different programs and different fuzzers. Programs compiled
by different fuzzers all have instrumentation errors. Even
small packages, like libwav whose total number of instru-
mented locations is around 100, suffer from instrumentation
errors. About one-fifth of libwav’s basic blocks are incor-
rectly instrumented.

Instrumentation locations and the error rate vary a lot
among different fuzzers. Programs produced by AFL with
either the assembly-level or compiler-level instrumentation
have the lowest instrumentation error rate. A deeper analysis
shows that the majority of instrumentation errors caused
by AFL are MIL errors. As for Memlock, it modifies the
instrumentation method of the AFL to get more information
about the memory and causes more instrumentation errors.
On average, there exist instrumentation errors in more than
one-fourth of basic blocks. With further analysis, the pro-

TABLE II: Number of instrumented locations (ILs) and the percentage of the instrumentation errors (Err-%) of packages compiled by
different fuzzers and different optimization options. The symbol - means the corresponding fuzzer could not compile the package. AFL(ASM)
column shows the results of binaries compiled by afl-gcc. AFL column shows the results of binaries compiled by afl-clang-fast. If not
specified, we use -O3 as the default option.

Program AFL(ASM) AFL-O0 AFL-O1 AFL-O2 AFL Memlock Angora AFL++ AFL++-LTO

ILs Err-% ILs Err-% ILs Err-% ILs Err-% ILs Err-% ILs Err-% ILs Err-% ILs Err-% ILs Err-%

catdoc 1,068 14% 1,071 8% 843 12% 915 13% 1,237 12% 1,098 8% 1,003 62% 660 60% 1,060 27%
libjpeg 5,488 49% 4,026 11% 3,240 13% 3,642 14% 4,653 15% 3,523 12% 3,328 65% 2,960 58% 4,906 31%
ngiflib 427 13% 392 8% 317 8% 422 8% 470 8% 407 8% 463 55% 253 56% 405 26%
libming 3,874 15% 3,749 16% 3,498 9% 5,321 11% 5,865 11% 3,075 37% 4,072 70% - - 3,461 27%
lupng 4,248 11% 3,329 11% 1,940 17% 2,464 18% 3,173 19% 3,708 11% 3,044 64% 1,588 63% 1,564 28%
mp3gain 3,441 12% 2,644 8% 1,740 18% 1,870 19% 2,488 19% 547 82% 2,335 63% 1,288 60% 2,141 28%
binutils 46,556 15% 43,098 9% 31,085 15% 37,653 15% 46,488 15% 61,718 10% 39,898 64% 31,953 64% 49,866 27%
libwav 101 24% 93 25% 72 19% 72 23% 93 23% 50 52% 70 63% 59 45% 45 35%
mpg321 2,287 16% - - - - 1,753 13% 1,550 14% - - - - - - 1,111 51%
libpng 16,868 12% 9,246 6% 7,332 15% 9,114 17% 7,801 21% 9,246 6% 7,916 65% 5,148 61% 3,955 52%
libtiff 25,086 13% 16,400 12% 12,851 14% 16,127 16% 13,883 20% 14,094 13% 11,844 63% 7,739 60% 9,411 52%

Average 9,949 18% 8,405 11% 6,292 14% 7,214 15% 7,973 16% 9,747 24% 7,397 63% 5,739 58% 7,084 35%

TABLE III: The number of the instrumentation errors before and after applying three fixing methods and the fixing rate. Ori-Err stands for
the instrumentation errors that we found in the program compiled with vanilla fuzzer, and After-Err is the remaining errors after our fixes.
The symbol - means the corresponding fuzzer could not compile the binary.

Program Straightforward way AFL(ASM) AFL Memlock

Ori-Err After-Err Fix Rate Ori-Err After-Err Fix Rate Ori-Err After-Err Fix Rate Ori-Err After-Err Fix Rate

catdoc 186 106 43.01% 294 0 100% 186 0 100.00% 91 0 100.00%
cjpeg 520 86 83.46% 1,038 1 99.89% 520 0 100.00% 403 0 100.00%
gif2tga 41 21 48.78% 95 0 100% 41 0 100.00% 32 0 100%
listswf 688 749 -8.87% 1,059 0 100% 688 0 100.00% 1,416 1 100%
lupng 580 132 77.24% 452 0 100% 580 0 100.00% 362 1 99.72%
mp3gain 454 - - 407 0 100% 454 0 100.00% 2,279 0 100.00%
nm 7,595 3,531 53.51% 7,729 15 99.81% 7,595 1 99.99% 4,088 1 99.98%
objdump 10,856 5,996 44.77% 10,789 39 99.64% 10,856 5 99.95% 6,524 1 99.98%
size 7,516 2,911 61.27% 7,667 19 99.75% 7,516 1 99.99% 4,084 1 99.98%
strip 8,881 - - 7,649 14 99.82% 8,881 4 99.95% 4,638 1 99.98%
wav gain 20 13 35.00% 24 0 100% 20 0 100.00% 53 0 100%
mpg321 223 - - 356 0 100% 223 0 100% - - -
pngfix 1,616 639 60.46% 2,079 1 99.95% 1,616 2 99.88% 597 0 100%
tiff2pdf 2,809 - - 3,199 4 99.87% 2,809 16 99.43% 1,857 0 100%
tiff2ps 2,425 - - 2,752 1 99.96% 2,425 4 99.84% 1,766 0 100%

Average 49.86% 99.91% 99.93% 99.96%

grams compiled by Memlock have more RIL errors than
programs compiled by other fuzzers. Instrumentation errors
are particularly common for programs compiled by Angora
and AFL++’s pcguard mode. For almost every program
compiled by Angora and AFL++, there are instrumentation
errors in more than half of the basic blocks.

The results also show that instrumentation errors intro-
duced by compiler-level instrumentation exist in all opti-
mization options. In general, no matter what optimization
option is set, more than 8% of the basic blocks of a program
exist instrumentation errors. There are fewer instrumentation
errors in the programs compiled by afl-clang-fast with O0.
But for a specific program, compiling with O0 could increase
the instrumentation errors, such as libwav whose error rate
reaches 25%.

We analyzed these instrumentation errors of different
fuzzers to explore the root cause, and found out that the
root causes are different for instrumentation errors introduced
by assembly-level and compiler-level instrumentation. For

assembly-level instrumentation, the errors are caused by side-
effects of the implementation of afl-gcc. In detail, AFL
misses the instrumentation after .p2align due to the Rule2.
Besides, AFL adds redundant instrumentation code after
labels that do not have the corresponding jump instruction
(Rule1). For compiler-level instrumentation, the errors are
caused by the transformation process from IR code to assem-
bly code. As the example in Figure 2 shows, there is no MIL
or RIL in the IR code, which is confirmed for other programs
compiled with compiler-level instrumentation by checking
their IR code. The errors happen during the transformation
process from IR code to assembly code, the IR basic blocks
will be split or merged due to the optimization, which causes
the MIL or RIL.

AFL, Memlock, Angora, and AFL++ use compiler-level
instrumentation, however, our experiments show that pro-
grams compiled by Angora and AFL++ have far more
instrumentation errors. We did further research and found
that besides the instrumentation, they do more modifications

TABLE IV: Code coverage, the number of real bugs, and the number of paths of the fuzzing result of the repaired program and the original
program. The last line is average for coverage and paths, and sum for real bugs. -re stands for the result of the repaired program. AFL(ASM)
column shows the results of binaries compiled by afl-gcc. AFL column shows the results of binaries compiled by afl-clang-fast.

Program AFL(ASM)-O0 AFL(ASM)-O1 AFL(ASM) AFL(ASM)-re AFL AFL-re

Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths

catdoc 1 50.0% 423 1 50.0% 702 1 50.0% 651 1 50.0% 684 1 50.0% 454 1 50.0% 453
cjpeg 2 14.3% 1,115 2 29.2% 1,581 2 29.5% 1,231 2 30.0% 1,199 2 29.2% 1,376 2 29.8% 671
gif2tga 4 75.3% 20,328 4 75.3% 18,247 3 75.3% 2,885 4 75.3% 42,635 2 75.3% 7,587 5 75.3% 40,453
listswf 3 18.0% 4,408 3 18.4% 5,207 3 18.4% 4,919 3 18.8% 5,625 3 21.0% 2,906 2 21.0% 2,430
lupng 0 38.7% 80 0 38.7% 75 0 38.7% 84 1 38.7% 92 0 38.7% 63 1 38.7% 71
mp3gain 5 57.3% 1,130 4 59.4% 1,341 5 59.5% 1,712 5 59.5% 1,685 6 58.8% 1,160 5 60.1% 1,118
nm 0 11.0% 2,267 0 10.5% 2,532 0 10.4% 2,563 0 10.0% 2,328 0 10.6% 2,497 0 10.9% 2,467
objdump 2 7.5% 1,980 2 7.6% 2,404 2 7.6% 2,505 2 7.6% 2,753 2 7.8% 2,190 2 7.5% 1,906
size 0 6.5% 1,818 0 6.4% 2,566 1 6.2% 2,933 0 6.8% 2,775 0 6.2% 1,690 0 6.0% 1,672
strip 1 7.9% 1,406 1 8.2% 1,688 0 8.1% 1,791 0 9.2% 2,619 0 8.0% 1,265 0 8.8% 1,716
wav gain 2 77.0% 47 2 77.0% 40 2 77.0% 55 2 77.0% 58 2 77.0% 44 3 77.0% 46
mpg321 - - - 1 18.7% 186 1 18.6% 171 1 18.6% 177 1 18.6% 168 1 18.6% 183
pngfix 0 17.6% 334 0 17.7% 378 0 18.3% 324 0 18.4% 365 0 18.4% 336 0 18.4% 334
tiff2pdf 0 43.0% 5,025 0 42.8% 9,298 0 43.1% 9,376 0 43.2% 5,658 0 44.2% 5,526 0 44.3% 5,562
tiff2ps 0 33.1% 5,541 0 32.8% 6,711 0 36.6% 7,169 0 36.5% 5,941 0 37.4% 5,688 0 39.0% 5,288

Sum/Aver 20 32.7% 3,279 20 32.8% 3,530 20 33.2% 2,558 21 33.3% 4,973 19 33.4% 2,197 22 33.7% 4,291

Program FairFuzz FairFuzz-re MOPT MOPT-re Memlock Memlock-re

Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths Bugs Coverage Paths

catdoc 1 50.0% 384 2 50.2% 385 1 50.1% 362 1 50.2% 417 1 50.0% 380 1 50.0% 385
cjpeg 2 30.3% 705 2 30.5% 715 3 30.9% 722 4 29.4% 632 0 26.1% 398 2 29.2% 648
gif2tga 3 75.3% 359 4 75.3% 695 3 75.3% 289 3 75.3% 316 2 79.4% 439 2 79.4% 391
listswf 3 64.9% 3,046 3 68.6% 3,699 0 68.6% 4,566 0 68.8% 4,640 3 66.1% 3,650 3 67.2% 4,102
lupng 1 38.7% 62 1 38.7% 67 0 38.7% 61 0 38.7% 68 0 38.7% 172 0 38.7% 171
mp3gain 6 60.7% 1,379 6 60.6% 1,390 5 57.7% 1,234 5 56.3% 1,225 5 60.8% 1,304 5 60.8% 1,315
nm 0 10.8% 3,928 0 10.0% 2,967 0 10.1% 2,015 0 10.1% 2,023 0 9.2% 5,808 0 9.4% 6,734
objdump 3 8.2% 3,029 3 8.7% 3,074 2 7.8% 2,187 2 8.2% 2,681 2 8.6% 3,397 2 8.3% 3,302
size 0 6.4% 1,973 1 6.9% 2,223 0 6.1% 1,974 0 7.0% 2,251 1 5.8% 2,929 0 5.7% 3,126
strip 0 8.4% 1,972 0 9.0% 2,279 0 9.1% 1,681 0 8.9% 1,840 0 8.1% 2,649 0 8.7% 2,744
wav gain 2 73.1% 42 2 73.1% 43 1 73.1% 40 1 73.1% 40 1 73.1% 48 2 73.1% 56
mpg321 1 18.7% 192 1 18.7% 170 1 18.6% 191 1 18.6% 164 - - - - - -
pngfix 0 17.7% 318 0 17.8% 304 0 17.7% 285 0 17.7% 288 0 18.3% 324 0 18.3% 362
tiff2pdf 0 44.5% 6,741 0 44.2% 6,624 0 39.4% 3,316 0 41.0% 4,556 0 36.1% 2,504 0 37.5% 2,661
tiff2ps 1 38.4% 6,062 1 38.4% 6,145 0 27.2% 1,514 0 27.6% 1,378 0 30.9% 2,165 0 31.2% 1,876

Sum/Aver 23 36.4% 2,013 26 36.7% 2,052 16 35.4% 1,362 17 35.4% 1,501 15 36.5% 1,869 17 37.0% 1,991

to the program during the compilation. Angora would split
the basic block containing condition statements, such as cmp
and switch statement, and generate two new branches. The
two branches are the same in program logic and the branch
target, but one of the branches will collect the information
of the condition statement. This strategy is proposed to cut
down the overhead of the constraint solving process. Similar
to Angora, AFL++ employs pc-guard strategy to speed up
the fuzzing, which adds new basic blocks into the program
during the compilation process. These new basic blocks only
contain a mov and a jmp instruction, which are used to load
the edge id from the global memory.

As most of the coverage-based greybox fuzzers are based
on AFL, and we have found great quantities of instrumenta-
tion errors caused by these state-of-the-art fuzzers, we can
see that instrumentation errors are common in real-world
coverage-based greybox fuzzers.

C. Repair Instrumentation Errors (RQ2)
We have demonstrated that there are vast numbers of MILs

and RILs in programs compiled by fuzzers like AFL and
Memlock. To repair the instrumentation errors, we applied

two methods proposed in Section III-B to them. Table III
shows the effect of our repairs. Since RetroWrite now could
not handle binaries compiled by Angora and AFL++, we only
listed 2 fuzzers in the table (More discussions in Section V).

As we mentioned in Section III-B1, we could not com-
pletely repair errors with the straightforward solution by
controlling compiler optimization options. However, with
InstruGuard, we almost eliminated all instrumentation errors
with a rate of 99.93% for programs compiled by the compiler-
level mode of AFL. For the programs compiled by the
assembly-level mode of AFL and Memlock, InstruGuard
achieved the similar effect, with a repair rate of over 99.9%.

We manually verified each unfixed instrumentation error
in IDA pro by checking the assembly code of the fixed
programs and did further research on them. We found they
are detection errors instead of unfixed errors. Most of the
errors are because of the missing branch label in the code
structures like switch. The argument of the jump instruction
in the switch is a register like rax rather than a branch
label. The original programs have jump table information so
IDA Pro could identify the basic blocks accurately. However,

loc_1600:

 Instrumentation

 cmp eax, 20746D66H

 jnz loc_16F9

loc_16AB:

 Instrumentation

 call malloc

 call read_content

loc_16F9:

 Instrumentation

 retn

False

True

False

True

True

False

 AFL Instrumentation

 call read_header

 cmp eax, 46464952h

 jnz loc_16F9

loc_1626:

 cmp eax, 61746164h

 jz loc_16AB

Figure 5: The simplified control flow graph of the code around the
memory allocation point in wav gain.

after the re-compilation process of RetroWrite, the jump table
information is lost, which makes IDA pro miss the label in
the destination basic block of the jump instruction.

D. Fuzz with Repaired Instrumentation (RQ3)

To evaluate the effectiveness of our repairs, we ran a
series of fuzzing experiments with the programs generated
by fuzzers’ instrumentation toolchains and the repair method.
The results are shown in Table IV, and we use the number of
real bugs, the line coverage of source code, and the number
of paths as the metrics.

We can find that the fuzzing results of the repaired binaries
are better at bugs and paths than the fuzzing results of
the original ones with instrumentation errors. AFL finds 1
more real bugs in total and covers 0.1% more lines of code
on average for the assembly-level mode. For compiler-level
mode, AFL can trigger almost 3000 more paths, find 3 more
real bugs, one of which is not reported before, and trigger
similar coverage on average with the repaired programs.
FairFuzz and Memlock are better at all three aspects with
our binary rewrite solution, while MOPT seems not to benefit
much. For specific programs, although AFL covers the same
amount of code (75.3%) when fuzzing gif2tga compiled
with afl-clang-fast, it finds more paths (from 7587 to
40453) with the repaired instrumentation, which results in
finding more bugs (from 2 to 5). Memlock cannot find any
bug in the origin cjpeg, but it finds 2 bugs in the repaired
cjpeg.
New Vulnerability. With repaired instrumentation, we for-
tunately found a new vulnerability of memory leak in
wav gain, The original AFL could not find this bug in
the program because of its inaccurate instrumentation. We
analyzed the vulnerability based on the bug report and found
there were several MIL errors, which are shown in Figure 5.
Just as the example in the Section II-B, the switch code is
optimized to a series of comparisons and some basic blocks
are not instrumented, so they cannot be perceived by AFL.
We repaired the instrumentation errors along the vulnerable

TABLE V: Fuzzing speed and the overview of p-values from
Mann-Whitney U Test. The Instru column is the fuzzing speed
of binaries compiled by afl-clang-fast with O3 and fixed by In-
struGuard. AFL(ASM) column shows the results of binaries compiled
by afl-gcc. AFL column shows the results of binaries compiled by
afl-clang-fast. mpg321 can not be compiled with -O0.

Program Instru AFL(ASM)-O0 AFL(ASM)-O3 AFL

Means Means P-value Means P-value Means P-value

catdoc 455 404 0.500 760 0.037 539 0.201
cjpeg 136 162 0.265 204 0.105 280 0.147
gif2tga 955 506 0.104 727 0.265 712 0.148
listswf 206 112 0.338 377 0.265 455 0.265
lupng 2995 2162 0.047 1828 0.006 2683 0.500
mp3gain 66 59 0.338 60 0.500 173 0.030
nm 1170 1225 0.072 1463 0.030 1408 0.047
objdump 486 206 0.006 358 0.047 540 0.148
size 1147 1304 0.072 1265 0.265 1231 0.338
strip 301 100 0.047 241 0.500 333 0.265
wav gain 153 158 0.417 112 0.047 131 0.104
mpg321 99 - - 148 0.337 73 0.006
libpng 907 167 0.011 770 0.265 1400 0.500
tiff2pdf 667 389 0.202 377 0.202 655 0.500
tiff2ps 366 98 0.104 472 0.338 960 0.104

AVG 715 504 0.011 644 0.105 822 0.202

paths, giving us the ability to explore the vulnerable paths
and discover the vulnerability. On the contrary, even though
AFL might trigger the vulnerable path but would abandon the
seed based on the wrong feedback caused by instrumentation
errors. The new vulnerability is assigned with CVE-2020-
28176 [1], which shows our repair is a benefit to fuzzing.

E. Performance & Overhead

To evaluate the performance of InstruGuard, we compared
the execution speed of programs before and after being re-
paired while fuzzing process, besides compared with several
compilation optimization levels. We took the execution speed
of programs, which are compiled by afl-clang-fast with
O3 and fixed by InstruGuard, to represent the performance of
InstruGuard, since afl-clang-fast is recommended by the
fuzzing community and O3 is the default optimization level.
Firstly, we compared the performance of binaries fixed by
InstruGuard with binaries compiled by afl-gcc. It is worth
noting that binaries compiled by afl-gcc with O0 and O1 are
free of instrumentation errors. As the performance results
of binaries compiled with O1 and with O3 are similar, we
did not show the result of O1 in the table. As Table V
shows, the average fuzzing speed (i.e., execution times each
second) of binaries fixed by InstruGuard is 41.9% faster than
binaries compiled by afl-gcc with O0, and 11.1% faster
than O3. Compared to binaries compiled by afl-gcc with
O0, 28.6% (4 of 14) of binaries fixed by InstruGuard are
significantly faster (based on the p-values), and 20% (3 of
15) of binaries are faster compared to O3. Although binaries
compiled by afl-gcc with O0 are free from the instrumenta-
tion errors, our method could achieve better performance. For
other optimization levels, binaries fixed by InstruGuard are
also comparable in performance. Combining with Table IV,
except InstruGuard, O1 and O0 might be good choices if

O2 O30

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

RIL MIL

(a) afl-gcc.

O0 O1 O2 O30

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

RIL MIL

(b) afl-clang-fast.

Figure 6: The distribution of MIL and RIL errors.

one compiles binaries with afl-gcc and does not care about
the execution speed while using AFL to test them. Their
performance in finding bugs is comparable with O3, and they
cause no instrumentation errors.

We also compared the performance of binaries fixed
by InstruGuard with the unfixed binaries compiled by
afl-clang-fast with O3. We found that binaries fixed by
our tool are similar to them, regardless of the mean values
or significant analysis. Surprisingly, the fuzzing speed of the
fixed mpg321 is even faster than the unfixed one, which might
be due to the shrinking size of the binary after the rewriting.
The shrunken parts comes from the relocation table, the
eh frame hdr section, and the eh frame section, which are
discarded by RetroWrite after rewriting.

As for the overhead, the processing time of InstruGuard
is 49 seconds on average for the tested programs, and the
maximum time is 241 seconds for mp3gain. Compared with
our entire fuzzing cycle (72 hours), the average overhead is
minimum (0.02%).

F. Case Study

We took a further step based on the extended dataset
to analyze the real-world instrumentation errors and shared
some interesting observations. Figure 6 shows the distribution
of the MIL and RIL errors. Since the programs compiled by
afl-gcc with O0 or O1 are free from instrumentation errors,
we did not present them in the figure.

1) MIL: Whether the program is compiled by afl-gcc
or afl-clang-fast, MIL accounts for the majority of in-
strumentation errors. After preliminary manual analysis, we
found that MIL occurs mostly in multiple continuous com-
parison logic in IR code. To verify this discovery, we wrote
an LLVM pass to identify the corresponding logic and found
that more than 70% of the MILs happen around the multiple
continuous comparison logic. The pass also matched the
multiple continuous comparison logic in IR code with the
source code. The corresponding source code can be roughly
categorized into 5 code patterns: 1 switch statement, 2
nested condition statements, such as if-if, 3 continuous if-
return statement, 4 loop nested conditional statement, such
as for-if, and 5 condition statement with multiple logical
operators, such as && or ||.

loc_400B70:

 Instrumentation

 cmp eax, 20

 jA default_case

False

True

default_case:

 Instrumentation

 jmp loc_400C85

loc_400C85:

 Instrumentation

 retn

case_0:

 Instrumentation

 jmp loc_400C80

case_19:

 Instrumentation

 jmp loc_400C80

case_3/5/18:

 Instrumentation

 jmp loc_400C80

switch_jump:

 jmp ds:off_401178[rax*8]

switch_jump:

 jmp ds:off_401178[rax*8]

loc_400C80:

 call puts

Figure 7: The simplified control flow graph of switch code structure
in optimization option O3 in afl-clang-fast.

Figure 7 is an example of objdump which con-
tained two MILs. The switch jump basic block and
the other in loc 400C80 were missed with instrumenta-
tion by afl-clang-fast with O3. Without feedback from
switch jump basic block, AFL will treat two different paths,
i.e., path with basic blocks of (loc 400B70, switch jump,
default case) and the path of (loc 400B70, default case), as
the same and record only one of them. If AFL records path
of (loc 400B70, default case), it will generate fewer paths
in which eax does not exceed 20. Under this situation, AFL
will leave some numerically sensitive crashes undiscovered,
and vice versa.

1 std::map<std::string,std::string> longs;
2 longs["--adjust"] = "-a";
3 longs["--binary"] = "-b";
4 ...
5 longs["--years"] = "-Y"

Listing 2: The code fragment of Params::getopt().

2) RIL: Most RILs exist in C++ programs for AFL.
Listing 2 displays the function Params::getopt() in exiv2,
which has the max number of RILs with the optimization
option O1. Each assignment operation results in adding three
more RILs during the compilation, and it has 120 RILs
in total. Similar RIL errors happen in bento4, which con-
tains 25 instrumentations in one basic block of function
AP4 HvccAtom::UpdateRawBytes(). This basic block con-
tains 24 call instructions which call the same function with
different arguments, and after each call instruction there is
an redundant instrumented location.

V. THREAT TO VALIDITY

Internal Validity. Fuzzing is a random process that may
have an impact on the results of our evaluation. To mitigate
the effect of randomness, we extended the timeout to 72
hours and repeated our experiments 5 times according to the
evaluation suggestions [20]. Besides, the process of binary
rewriting could change the program behavior and introduce
new vulnerabilities. In order to eliminate these possible

effects, we double-checked each bug with original programs
compiled with Address Sanitizer [33] while fuzzing, as well
as gathered the line coverage of source code with the original
programs.

External Validity. Due to the limitation of the RetroWrite,
the binary rewriting tool we use, InstruGuard now could only
find instrumentation errors for C++ programs and binaries
compiled by Angora and AFL++, but could not fix them. It is
mainly because that RetroWrite has trouble handling binaries
that contain C++ exceptions, fails to disassemble binaries
compiled by Angora, and generates non-compilable assembly
code for binaries compiled by AFL++. However, since our
repair method has been proven effective, once RetroWrite
is updated or more powerful binary rewrite tools come out,
InstruGuard will be able to fix instrumentation errors for all
fuzzers.

In this paper, we also did not fix the program instrumented
by fuzzers that use selective instrumentation. We selected 6
fuzzers as the research targets since they are representative
and differ in instrumentation methods. They all try to explore
as many paths as possible. However, other types of fuzzers
also exist. For example, some fuzzers are designed for
specific types of vulnerability, they could only instrument
the “interesting” basic blocks or paths without triggering un-
related paths. For these fuzzers, we could extend InstruGuard
with additional configurations to detect instrumentation errors
along a specific path to ensure they act as expected.

VI. RELATED WORK

The most related researches and techniques are presented
in the following two parts, including greybox fuzzing and
instrumentation.

Greybox fuzzing. Researchers improve fuzzing from var-
ious aspects. Some of them are applied after the instrumen-
tation process. Vuzzer [32], Skyfire [19], Neuzz [36], and
Faster Fuzzing [30] learn the important bytes or the grammars
of the input files for more effective mutations. MOPT [27]
optimizes the seed mutation scheduling strategies with the
Particle Swarm Optimization (PSO) algorithm. AFLFast [5]
allocates more energy to test the low-frequency paths to
optimize the path exploration. Driller [38], QSYM [51] and
T-fuzz [31] integrate static and dynamic analysis to prioritize
hard-to-reach deeper paths.

Others modify the instrumented code to record more
program behaviors or improve the sensitivity of the feedback.
To guide the testing towards specific locations, AFLGo
[6] modifies the instrumentation to calculate the distance
between the current path and the target location. Memlock
[47] and UAFL [42] collect the memory behavior of the
programs to find more memory-related bugs. Angora [10]
uses call stack while AFL-sensitive [43] uses n-gram to
identify the different paths more specifically.

Instrumentation. Instrumentation approaches can be di-
vided to binary instrumentation and source instrumentation.
Usually binary instrumentation is applied when the source
code of the tested program is unavailable, and could slow

down the program significantly. Some fuzzers [31, 32, 38,
45] obtain feedback with dynamic binary instrumentation
tools such as QEMU [4], DynamoRIO [7], and hardware-
accelerated Intel Processor Trace. Fuzzers like AFL-Dyninst
[40] use static instrumentation tools [8] to obtain feedback.
Specifically, they use code patching techniques to inject
callback events to gather coverage or other information.

AFL-family fuzzers [34, 39, 52] mainly get feedback
through source instrumentation, which inserts a piece of
specific code to each basic block while the target program
is compiled with GCC or LLVM. Only a little research is
conducted about the instrumentation problem. AFL-cc [37]
tries to minimize the difference between the LLVM IR code
and the binary by reducing the optimization. UNIFUZZ [26]
notices that the instrumentation method might affect the
fuzzing evaluation. However, they do not systemically an-
alyze the impact and fix instrumentation errors.

VII. CONCLUSION

In this paper, we point out several types of instrumentation
errors in coverage-based greybox fuzzers, and propose a
framework named InstruGuard to find and fix instrumentation
errors. We assessed the impacts of instrumentation errors on
greybox fuzzers with a dataset of 15 real-world programs,
and evaluated the effectiveness of our repairs through fuzzing
from the aspect of paths, line coverage, and real bugs. The
results showed that instrumentation errors are common for
all compilation optimizations and all coverage-based grey-
box fuzzers, and have a significant impact on the fuzzing
results. Our method fixed instrumentation errors effectively
and benefited coverage-based greybox fuzzers.

ACKNOWLEDGEMENT

We thank the anonymous reviewers of this work for
their helpful feedback. This research is supported, in part,
by National Natural Science Foundation of China (Grant
No. U1836117, U1836113, U1736209, and 61902384), the
Strategic Priority Research Program of the Chinese Academy
of Sciences, Grant No. XDC02020300. All opinions ex-
pressed in this paper are solely those of the authors.

REFERENCES
[1] “CVE-2020-28176,” https://cve.mitre.org/cgi-bin/cvename.cgi?name

=2020-28176.
[2] “IDA Pro,” https://www.hex-rays.com/products/ida/.
[3] “IDApython,” https://www.hex-rays.com/products/ida/support/idapyt

hon docs/.
[4] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Pro-

ceedings of the Annual Conference on USENIX Annual Technical
Conference, 2005, pp. 41–41.

[5] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” IEEE Transactions on Software Engineering,
vol. 45, no. 5, pp. 489–506, 2016.

[6] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
2329–2344.

[7] D. Bruening, E. Duesterwald, and S. Amarasinghe, “Design and
implementation of a dynamic optimization framework for windows,” in
4th ACM Workshop on Feedback-Directed and Dynamic Optimization
(FDDO-4), 2000.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-28176
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-28176
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/

[8] B. Buck and J. K. Hollingsworth, “An api for runtime code patching,”
Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp. 317–329, 2000.

[9] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawkeye:
Towards a desired directed grey-box fuzzer,” in ACM Conference on
Computer and Communications Security, 2018.

[10] P. Chen and H. Chen, “Angora: efficient fuzzing by principled search,”
in Proceedings of the 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2018.

[11] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“Savior: Towards bug-driven hybrid testing,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 1580–1596.

[12] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and
B. Mao, “Ptrix: Efficient hardware-assisted fuzzing for cots binary,”
in Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, ser. Asia CCS ’19, 2019.

[13] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao,
and Z. Su, “Enfuzz: Ensemble fuzzing with seed synchronization
among diverse fuzzers,” in Proceedings of the 28th USENIX Security
Symposium, 2019.

[14] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint
solving for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
515–530.

[15] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1497–1511.

[16] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

[17] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“GREYONE: Data flow sensitive fuzzing,” in 29th USENIX Security
Symposium, 2020.

[18] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in Proceedings of the 2018 IEEE Symposium
on Security and Privacy. IEEE, 2018.

[19] W. Junjie, C. Bihuan, W. Lei, and L. Yang, “Skyfire: Data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy, 2017, pp. 579–594.

[20] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018.

[21] laf-intel, “Circumventing fuzzing roadblocks with compiler transfor-
mations,” https://lafintel.wordpress.com/2016/08/15/circumventing-fu
zzing-roadblocks-with-compiler-transformations/, [2019-1-27].

[22] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the interna-
tional symposium on Code generation and optimization: feedback-
directed and runtime optimization. IEEE Computer Society, 2004.

[23] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz: Automati-
cally generating pathological inputs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018.

[24] C. Lemieux and K. Sen, “FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018.

[25] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering.
ACM, 2017.

[26] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng et al., “UNIFUZZ: A holistic and pragmatic
metrics-driven platform for evaluating fuzzers,” in 30th USENIX Se-
curity Symposium (USENIX Security 21), 2021.

[27] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“MOPT: Optimized Mutation Scheduling for Fuzzers,” in Proceedings
of the 28th USENIX Security Symposium, 2019.

[28] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, 1990.

[29] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing over-
head through coverage-guided tracing,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 787–802.

[30] N. Nichols, M. Raugas, R. Jasper, and N. Hilliard, “Faster fuzzing:
Reinitialization with deep neural models,” CoRR, vol. abs/1711.02807,

2017.
[31] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program

transformation,” in 2018 IEEE Symposium on Security and Privacy,
2018, pp. 697–710.

[32] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in Proceedings of
the 24th Network and Distributed System Security Symposium, 2017.

[33] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: a fast address sanity checker,” in Usenix Conference
on Technical Conference, 2012.

[34] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssani-
tizer,” IEEE, 2016.

[35] ——, “Oss-fuzz - google’s continuous fuzzing service for open source
software,” 2017.

[36] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program smoothing,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019.

[37] L. Simon and A. Verma, “Improving Fuzzing through Controlled
Compilation,” in 5th IEEE European Symposium on Security and
Privacy (EuroS&P), 2020.

[38] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proceedings of
the 23rd Network and Distributed Systems Security Symposium, 2016.

[39] R. swiecki, “Honggfuzz,” https://github.com/google/honggfuzz, 2016.
[40] talos vulndev, “AFL Dyninst,” https://github.com/talos-vulndev/afl-dy

ninst, 2018.
[41] D. Veillard, “Libxml2: The XML C parser and toolkit of Gnome,”

http://www.xmlsoft.org, 2012.
[42] H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen,

and Y. Sui, “Typestate-guided fuzzer for discovering use-after-free
vulnerabilities,” in 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), 2020, pp. 999–1010.

[43] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive
and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses, 2019.

[44] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering. IEEE, 2019, pp. 724–735.

[45] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu,
K. Chen, and W. Zou, “Revery: From proof-of-concept to exploitable,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[46] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting for
input prioritization,” in NDSS, 2020.

[47] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen, X. Xie,
G. Pu, and T. Liu, “Memlock: Memory usage guided fuzzing,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. ICSE, 2020.

[48] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing
for kernel file systems,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1643–1660.

[49] S. Yan, C. Wu, H. Li, W. Shao, and C. Jia, “Pathafl: Path-coverage
assisted fuzzing,” Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, 2020.

[50] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and
B. Liang, “Profuzzer: On-the-fly input type probing for better zero-
day vulnerability discovery,” in 2019 IEEE Symposium on Security
and Privacy. IEEE, 2019, pp. 769–786.

[51] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical
Concolic Execution Engine Tailored for Hybrid Fuzzing,” in Proceed-
ings of the 27th USENIX Security Symposium. USENIX Association,
2018.

[52] M. Zalewski, “American fuzzy lop (AFL) fuzzer,” http://lcamtuf.core
dump.cx/afl, 2013.

[53] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my
way: Probabilistic path prioritization for hybrid fuzzing,” in NDSS,
2019.

[54] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-
afl: High-throughput greybox fuzzing of iot firmware via augmented
process emulation,” in 28th USENIX Security Symposium, 2019, pp.
1099–1114.

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing- roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing- roadblocks-with-compiler-transformations/
https://github.com/google/honggfuzz
https://github.com/talos-vulndev/afl-dyninst
https://github.com/talos-vulndev/afl-dyninst
http://www.xmlsoft.org
http://www.xmlsoft.org
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

	Introduction
	Background
	Coverage-based greybox Fuzzing
	Motivating Example
	Instrumentation errors of Greybox Fuzzers
	Focus of this paper

	Method
	Detect Instrumentation Errors
	Fix Instrumentation Errors
	Straightforward solution based on compiler options
	General solution based on Binary Rewriting

	Implementation

	Evaluation
	Setup Experiments
	Program Dataset
	Instrumentation Methods
	Fuzzing Setting

	Detect Instrumentation Errors (RQ1)
	Repair Instrumentation Errors (RQ2)
	Fuzz with Repaired Instrumentation (RQ3)
	Performance & Overhead
	Case Study
	MIL
	RIL

	Threat to Validity
	Related Work
	Conclusion

